Chapter 4: Algebraic Equations

A letter is just a variable!

A variable is something that can change.

A constant is something that stays the same.

Algebraic Expression	Translation
3 x	3 times a number (variable)
5p - 3	5 times a number (variable) minus 3
	OR
	3 less than 5 times a number (variable)
	OR
	3 subtracted from 5 times a number (variable)
m	A number (m) divided by 7
7	The quotient of m and 7

*Math Tip: Remember to use BEDMAS (Brackets Exponents Division/Multiplication and then Addition/Subtraction)

Problems: Evaluate

Evaluate: 2x + 5, where x = 3

*Evaluate means "plug-it-in" OR find what the answer is.

```
2x + 5 (where =3)
= 2(3) + 5
= 6 + 5
= 11
```

If a problem asks you to "evaluate this expression", expression means a combination of variables and constants in algebraic form.

You can evaluate one single expression infinite number of times by using different variables!

Problems: Solving for the Variable

When bringing a number from one side of an equation to another, you need to remember the opposite operations occur.

Example:

x + 3 = 8

When bringing 8 to the other side of the equation (before the equals sign), you need to change the operation (right now it is denoting a + 8, it will change to a - 8 when brought over)

x+3-8=0

- When you multiply on one side of an equation, you would divide to bring it to the other side.
- When you divide on one side of an equation, you would multiply to bring it to the other side.

*Math Tip: Whatever you do to one side of an equation, you <u>have</u> to do to the other.

Solve for the variable: x + 7 = 10

x + 7 = 10x + 7 - 7 = 10 - 7x = 3

Solve for the variable: x + 2 = 12

x + 2 = 12x + 2 - 2 = 12 - 2x = 10

Solve for the variable: x - 5 = 13

x - 5 = 13x - 5 + 5 = 13 + 5x = 18

Solve for the variable: 5 x = 35

5 x = 35 $\frac{5x}{5} = \frac{35}{5}$ x = 7

Solve for the variable: 3 x = 27

$$3 x = 27$$
$$\frac{3x}{3} = \frac{27}{3}$$
$$x = 9$$

Solve for the variable: $\frac{x}{3} = 13$

$$\frac{x}{3} = 13$$
$$3 \cdot \frac{x}{3} = 13 \cdot 3$$
$$x = 39$$

*Math Tip: Always look for "how do I get x by itself." That's what's important. The other numbers are there for the ride.

Further Practice

1. Solve for the variable: x + 23 = 33

x = _____

2. Solve for the variable: x + 9 = 3

x = _____

*Math Tip: Your answer may be a negative number (as shown above); it will not always be a positive number.

3. Solve for the variable: x - 11 = 2

x = _____

4. Solve for the variable: x - 3 = 44

x = _____

5. Solve for the variable: 3x = 33

x = _____

6. Solve for the variable: 7x = 49

x = _____

7. Solve for the variable: $\frac{4p}{6} = 2$

- *p* = _____
- 8. Evaluate x = 5a + 3, where a = 3

x = _____

9. Evaluate x = 4b + 5, where b = 8

x = _____