Chapter 4: Algebraic Equations

A letter is just a variable!
A variable is something that can change.
A constant is something that stays the same.

Algebraic Expression

$3 x$	3 times a number (variable)
$5 p-3$	5 times a number (variable) minus 3 OR
	3 less than 5 times a number (variable) OR 3 subtracted from 5 times a number (variable)
$\frac{m}{7}$	A number (m) divided by 7 The quotient of m and 7

*Math Tip: Remember to use BEDMAS (Brackets Exponents
Division/Multiplication and then Addition/Subtraction)

Problems: Evaluate

Evaluate: $2 \boldsymbol{x}+5$, where $\mathrm{x}=3$
*Evaluate means "plug-it-in" OR find what the answer is.
$2 x+5$ (where $=3$)
$=2(3)+5$
$=6+5$
$=11$
If a problem asks you to "evaluate this expression", expression means a combination of variables and constants in algebraic form.

You can evaluate one single expression infinite number of times by using different variables!

Problems: Solving for the Variable

When bringing a number from one side of an equation to another, you need to remember the opposite operations occur.

Example:
$x+3=8$
When bringing 8 to the other side of the equation (before the equals sign), you need to change the operation (right now it is denoting a +8 , it will change to $a-8$ when brought over)
$x+3-8=0$

- When you multiply on one side of an equation, you would divide to bring it to the other side.
- When you divide on one side of an equation, you would multiply to bring it to the other side.
*Math Tip: Whatever you do to one side of an equation, you have to do to the other.

Solve for the variable: $\boldsymbol{x}+7=10$
$x+7=10$
$x+7-7=10-7$
$x=3$

Solve for the variable: $\boldsymbol{x}+2=12$

$$
\begin{aligned}
& x+2=12 \\
& x+2-2=12-2 \\
& x=10
\end{aligned}
$$

Solve for the variable: $\boldsymbol{x - 5 = 1 3}$
$x-5=13$
$x-5+5=13+5$
$x=18$
Solve for the variable: $5 \boldsymbol{x}=\mathbf{3 5}$
$5 x=35$
$\frac{5 x}{5}=\frac{35}{5}$
$x=7$
Solve for the variable: $\mathbf{3 x} \boldsymbol{x}=27$
$3 x=27$
$\frac{3 x}{3}=\frac{27}{3}$
$x=9$
Solve for the variable: $\frac{x}{3}=13$
$\frac{x}{3}=13$
$3 \cdot \frac{x}{3}=13 \cdot 3$
$x=39$
*Math Tip: Always look for "how do I get x by itself." That's what's important. The other numbers are there for the ride.

Further Practice

1. Solve for the variable: $x+23=33$

$$
x=
$$

2. Solve for the variable: $\boldsymbol{x}+9=3$

$$
x=
$$

*Math Tip: Your answer may be a negative number (as shown above); it will not always be a positive number.
3. Solve for the variable: $\boldsymbol{x}-11=2$

$$
x=
$$

4. Solve for the variable: $\boldsymbol{x}-3=44$

$$
x=
$$

5. Solve for the variable: $3 x=33$

$$
x=
$$

6. Solve for the variable: $7 x=49$

$$
x=
$$

7. Solve for the variable: $\frac{4 p}{6}=2$

$$
p=
$$

8. Evaluate $x=5 a+3$, where $a=3$

$$
x=
$$

9. Evaluate $x=4 b+5$, where $b=8$

$$
x=
$$

\qquad

